The Invasion of *Spartina alterniflora* Alters Carbon Dynamics in China's Coastal Wetlands Changfang Zhou^{1,2}, Hui Zhao^{1,2}, Zhiyi Sun¹, Luxian Zhou¹, Chao Fang¹, Zifa Deng¹, Shuqing An^{1,2*} (¹School of Life Science and Institute of Wetland Ecology, Nanjing University, Nanjing 210093, China; ²Nanjing University Ecology Research Institute of Changshu, Changshu 215500, Jiangsu, China; *anshq@nju.edu.cn) Ecosystem processes are tightly linked to the structure and functioning of plant communities. Large-scale invasion of *Spartina alterniflora* on unvegetated intertidal mudflats is expected to reduce atmospheric CO₂ through an increase in the carbon storage of coastal ecosystem. In China, Yancheng Natural Reserve, plant carbon storage (PCS), soil total organic carbon storage (SCS), as well as CO₂ and CH₄ fluxes, were compared between *Spartina* invaded marsh and adjacent native marshes. PCS of *Spartina* marsh was 16.9 and 1.4 times higher compared to those of *Suaeda* and *Phragmites* marshes, whereas relatively larger aboveground PCS but smaller belowground PCS were found in the newly settled seaward margin of the *Spartina* marsh. SCS in *Spartina* marsh was also 1.5 times higher than that in unvegetated mudflat. Although *Spartina* vegetation assimilated a substantial amount of CO₂, mass emission of CH₄ from the invaded marsh was also noticed, especially in summer, it was 9–16 times higher than those from native marshes. Our study indicates that instead of CO₂ being simply incorporated into PCS and SCS, carbon dynamics following *Spartina* invasion are more complicated. Detailed studies of CH₄ emissions are needed before ascertaining whether, and to what degree, the invasion of *S. alterniflora* may affect the global warming process. **Key words:** biogeochemistry; carbon dynamics; coastal wetland; natural reserve; plant invasion